Researchers Develop New Energy-Saving LED Phosphor

Posted May 14, 2019 by University of Innsbruck

The human eye is particularly sensitive to green light, but less sensitive to blue and red. Now chemists led by Hubert Huppertz, at the University of Innsbruck, have developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain color. However, white light can be created using different color mixing processes. In a white LED, red and yellow-green phosphors are excited by the light from a blue diode. The particles emit light in the red and green range, and in combination with the blue light they produce white light, according to Hubert Huppertz, who is from the Department of General, Inorganic and Theoretical Chemistry at the University of Innsbruck, Austria. He and his team are working on improving the red and green phosphors. In cooperation with OSRAM Opto Semiconductors, his team has now succeeded in synthesizing a new red phosphor that has excellent luminescence properties and can make LED lighting significantly more energy-efficient.

The powerful red phosphor Sr[Li2Al2O2N2]:Eu2+, named SALON by the researchers, meets all the requirements for the optical properties of a phosphor. The development goes back to research carried out by Hubert Huppertz at the University of Bayreuth. As part of his doctoral thesis, he developed nitrides doped with europium that are fluorescent. These were then further optimized by the working group in Munich and are now widely used.

These red phosphors are partly responsible for the fact that LEDs no longer only glow cold white, but also warm white. Interestingly, the human eye reacts most sensitively to the color green. In the blue and red areas, the eye is less sensitive. Although these phosphors emit red light in the visible range, a large part of the energy goes into the infrared range, which the human eye does not perceive. The fluorescent material developed in Innsbruck has now succeeded in slightly shifting the light emission from red towards blue.

According to doctoral student Gregor Hoerder, since initially only a few very small particles were available in a very inhomogeneous sample, it was difficult to optimize the synthesis. The breakthrough came when the researchers were able to isolate a single-crystal from one of the most promising synthesis products and thus determine the structure of the new material. The substance is synthesized in such a way that it emits more orange than red. With SALON there is less energy loss, it emits exactly in the red range where it can be seen.

OSRAM Opto Semiconductors, a strong industrial partner, the Fraunhofer Institute for Microstructures of Materials and Systems IMWS in Halle and Dirk Johrendt's research group at the Ludwig Maximilian University in Munich were also involved in further characterizing the new material. The development has already been registered for patent. Click here to view the published research paper.