Optical Detectors

702 Optical Detectors from 23 manufacturers listed on GoPhotonics

An Optical Detector is an electronic device used to detect optical signals and convert them into electrical signals. Optical Detectors from the leading manufacturers are listed below. Use the filters to narrow down on products based on your requirement. Download datasheets and request quotes for products that you find interesting. Your inquiry will be directed to the manufacturer and their distributors in your region.

Description: Single Mode Ultrafast Detector with Current Monitor, 750 - 1650 nm, DC - 30 GHz, FC/PC
Package Type:
Module with Connector
Photodiode Material:
InGaAs
Spectral Band:
Infrared
Wavelength Range:
750 to 1650 nm
Dark Current:
50 nA
Responsivity/Photosensitivity:
0.5 to 0.7 A/W
Rise Time:
15 ps
more info View products from this company
Description: 5.0mm NIR (400-1000nm), Si APD
Package Type:
Through-Hole
Photodetector Type:
Avalanche
Photodiode Material:
Silicon
Spectral Band:
Near-IR
Wavelength Range:
400 to 1000 nm
Active Area Diameter:
5 mm
Capacitance:
95 pF
Dark Current:
3.00 to 30.00 nA
Responsivity/Photosensitivity:
Photosensitivity: 0.5 A/W
more info View products from this company
Description: PIN Photodiode with Enhanced Blue Sensitivity in DIL Plastic Package
Package Type:
Surface Mount
Photodetector Type:
PIN
Photodiode Material:
Silicon
Wavelength Range:
350 to 1100 nm
Capacitance:
72 pF
Dark Current:
2 to 30 nA
Responsivity/Photosensitivity:
Spectral sensitivity: 0.2 A / W
Rise Time:
0.025 µs
more info View products from this company
Description: InGaAs Avalanche Photodiode (APD) 2.5 Gbps with TIA
Package Type:
Through-Hole
Photodetector Type:
Avalanche
Photodiode Material:
InGaAs
Wavelength Range:
1000 to 1625 nm
more info View products from this company
Description: InGaAs APD Module
Package Type:
Through-Hole
Photodetector Type:
Avalanche
Photodiode Material:
InGaAs
Wavelength Range:
1000 to 1650 nm
Active Area Diameter:
50 µm
Capacitance:
1 pF
Dark Current:
2 nA
Responsivity/Photosensitivity:
7 to 9 A/W
Bandwidth:
2.5 GHz
more info View products from this company
Active Area:
1 mm x 1 mm
Package Type:
Through-Hole
Photodetector Type:
PIN
Photodiode Material:
Pbse
Spectral Band:
Infrared
Wavelength Range:
4.1 to 4.3 nm
Responsivity/Photosensitivity:
1.2 x 10^5 V/W
more info View products from this company
Description: Red Enhanced Silicon Photodiode
Active Area:
4.7 x 3.2 mm
Package Type:
Ceramic, Leaded
Photodetector Type:
PIN
Photodiode Material:
Silicon
Spectral Band:
Red
Wavelength Range:
350 to 1100 nm
Capacitance:
53 to 255 pF
Dark Current:
5 to 20 nA
Responsivity/Photosensitivity:
0.32 to 0.55 A/W
more info View products from this company
Description: Single-Channel Voltage-Mode Pyroelectric Photodetectors for FTIR, Spectroscopy & THz Detection
Package Type:
TO-Can
Photodiode Material:
Pyroelectric, LiTaO3
Spectral Band:
Ultraviolet, Near-IR, Infrared
Active Area Diameter:
5.3 mm
Responsivity/Photosensitivity:
35 to 275 V/W
more info View products from this company
Description: High Sensitivity Fast PIN Photodetector
Package Type:
Module with Connector
Photodetector Type:
PIN
Photodiode Material:
Silicon
Spectral Band:
Visible
Wavelength Range:
400 to 1000 nm
Active Area Diameter:
0.25 mm
Rise Time:
2 ns
Bandwidth:
Modulation Bandwidth: DC to 200 MHz
more info View products from this company
Package Type:
Module with Connector
Photodetector Type:
Avalanche
Photodiode Material:
InGaAs
Spectral Band:
Infrared
Wavelength Range:
800 to 1700 nm
Active Area Diameter:
0.0024 mm
Dark Current:
0.3 nA
Rise Time:
35 ps
Bandwidth:
10 GHz
more info View products from this company
Description: Fast Photodiode Detectors (FPD) from 193 to 1100 nm
Active Area:
5.11 x 5.11 mm
Package Type:
Benchtop
Photodetector Type:
PIN
Photodiode Material:
Silicon
Spectral Band:
Ultraviolet
Wavelength Range:
193 to 1100 nm
Active Area Diameter:
2.55 mm
Dark Current:
10 nA
Responsivity/Photosensitivity:
0.58 A/W
Rise Time:
3 nS
Bandwidth:
118 MHz
more info View products from this company
Description: Pyroelectric Optical Detector for Laser Energy Measurement of up to 3 J
Wavelength Range:
0.193 to 22 um
Active Area Diameter:
22 mm
Responsivity/Photosensitivity:
20 A/W
Rise Time:
20 us
more info View products from this company
Description: Analogue Pyroelectric Detectors for Gas Analysis and Flame Detection
Package Type:
Through-Hole
Photodiode Material:
Pyroelectric, LiTaO3
more info View products from this company
Description: Spectrolab’s 75 micron diameter Avalanche Photodetector Die is built on using low-noise InAlAs/InGaAs device design. These are front illuminated mesa design and offer low dark current and low-noise he...
Package Type:
Die
Photodetector Type:
Avalanche
Photodiode Material:
InGaAs, InAlAs
Spectral Band:
Infrared
Wavelength Range:
1 to 1.7 µm
Active Area Diameter:
Effective Optical Diameter: 40 µm
Capacitance:
0.3 to 0.5 pF
Dark Current:
5 to 20 nA
Responsivity/Photosensitivity:
6 to 9 A/W
more info View products from this company
Description: Si CMOS Avalanche Photodiodes
Package Type:
Die
Photodetector Type:
Avalanche
Photodiode Material:
Silicon
Spectral Band:
Infrared
Wavelength Range:
850 nm
Active Area Diameter:
20 µm
Dark Current:
50 pA
Responsivity/Photosensitivity:
0.3 to 0.25 A/W
Bandwidth:
2 to 3 GHz
more info View products from this company
1 - 15 of 702 Optical Detectors

What is an Optical Detector? 

An Optical Detector, is a device that transforms light signals into electrical signals, enabling their amplification and processing. These detectors play an important role in optical fiber communication systems and directly impact the performance of a fiber optic communication link.


They are electronic devices used for light detection and in certain cases, these detectors can also detect and measure other forms of electromagnetic radiation directed at a specific device or circuitry. In simpler terms, optical detectors are electromagnetic sensors that convert electromagnetic radiation into electric signals, which can be measured using an appropriate device. The resulting electric signal is directly proportional to the intensity of the incident light or electromagnetic radiation.

Photo detectors inside optical detectors come in various types, including semiconductor photodiodes, photomultiplier tubes, vacuum photodiodes, and pyroelectric detectors. Among them, semiconductor photodiodes are the most widely employed detectors in optical fiber systems. It is due to their favorable performance, compact size, compatibility with optical fibers, and relatively low cost. Semiconductor photodiodes are typically made from materials like silicon or germanium, as well as compound semiconductors such as GaAs, InGaAs, and others.

Block Diagram of Optical Detector 


The input signal from a source such as a laser or fiber optic cable is first sent to the optical system. The optical system may consist of lenses, mirrors, filters, or other optical elements that manipulate or condition the incoming light. These components help focus or direct the light onto the detector. The photodetector is the key component responsible for converting the optical signal into an electrical signal. Different types of photodetectors can be used, such as photodiodes, photomultiplier tubes (PMTs), avalanche photodiodes (APDs), or CCD/CMOS sensors, depending on the specific application requirements. The signal is then sent to the signal conditioning circuitry, where the components inside it process and amplify the electrical signal generated by the detector. It may include amplifiers, filters, or impedance matching circuits to enhance the signal quality and adapt it for further processing. This processed electrical signal from the signal conditioning block represents the output of the optical detector. It can be used for various purposes, such as data acquisition, further analysis, or transmission to other systems.

Working Principle of Optical Detector


The fundamental principle behind photodetection with semiconductors is optical absorption. When light interacts with a semiconductor material, such as silicon or gallium arsenide, its absorption depends on the wavelength or color of the light. 

The energy carried by a photon, denoted as hν (where h is Planck's constant and ν is the frequency of the light wave), determines whether absorption occurs. The absorption of light by a semiconductor takes place when the energy of a photon exceeds the bandgap energy of the semiconductor. The bandgap energy is the minimum energy required for an electron in the valence band of the semiconductor to transition to the conduction band, where it can move freely. 

When absorption occurs, the incident photon transfers its energy to the semiconductor material. This energy is sufficient to promote electrons from the valence band to the conduction band, leaving behind vacant spaces called holes in the valence band. These electron-hole (e-h) pairs are generated as a result of absorption. By applying an electric field across the semiconductor material, the photogenerated e-h pairs are separated and driven away. This separation prevents the recombination of the e-h pairs and thereby generates a photocurrent within the external circuit.

Types of Photodetectors used inside the Optical Detectors

There are different types of photodetectors. Some of the important ones are:

  • Photodiode
    • PN Photodiode
    • PIN Photodiode
    • Avalanche photodiode
  • Metal-Semiconductor-Metal Photodetector (MSM detector)
  • Photoconductive Detector

Important parameters of an Optical Detector

  • Quantum Efficiency

A detector cannot capture and convert all incoming photons into electron-hole pairs. The quantum efficiency of a detector refers to the number of electrons generated per incident photon and is typically expressed as a percentage.

  • Responsivity

The quantum efficiency of a detector does not take into account the energy of the photons. Therefore, it is more accurate to define responsivity, which considers the photon energy. Responsivity of a detector is defined as the ratio of the generated photocurrent (Ip) to the incident optical power (Po) on the detector.

Applications of Optical Detectors

Optical detectors have a wide range of applications across various industries. They are a fundamental component of optical fiber communication systems. These detectors convert light signals into electrical signals, enabling the transmission of data over long distances with minimal loss.

Optical detectors, such as image sensors, are used in digital cameras and imaging devices to capture and convert light into digital images. They play a crucial role in photography, video recording, and surveillance systems.

These detectors are used in medical devices for diagnostics and monitoring purposes. They are utilized in pulse oximeters to measure oxygen saturation levels in the blood, in photoplethysmography devices for measuring heart rate and blood flow, and in optical coherence tomography for imaging internal structures in medical imaging.

Optical detectors are also employed in environmental monitoring systems to measure various parameters such as air quality, pollutant levels, and radiation. They are used in devices like gas sensors, particulate matter detectors, and UV sensors.

They are widely used in industrial automation for tasks such as object detection, position sensing, and quality control. These detectors enable accurate and reliable detection of objects, presence or absence of materials, and precise positioning in manufacturing processes.

Optical detectors play a significant role in remote sensing applications, including satellite imaging and Earth observation. They capture and analyze electromagnetic radiation from the Earth's surface to gather information about vegetation, weather patterns, land use, and more.

These detectors are utilized in automotive applications such as collision avoidance systems, lane departure warning systems, and adaptive lighting. They help in detecting obstacles, measuring distances, and improving safety in vehicles.

Filters

Manufacturers from 

Photodetector Type 

More

Photodiode Material 

More

Package Type 

Active Area Diameter (mm)  

Spectral Band 

More

Responsivity/Photosensitivity (A/W)  

Need Help Finding a Product?

Looking for a Product or Supplier?

Let us know what you need, we can help find products that meet your requirement.